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Abstract. The dynamics of a large variety of complex systems are
confined to a low-dimensional manifold. We show that the resonance
curve of those systems has a universal shape. The parameters of the
resonance curve can be used to characterize a complex system.

INTRODUCTION

Resonance spectroscopy has proved very successful in many fields of
physics. However nonlinear oscillators usually respond to a purely periodic
perturbation in a complex and often chaotic manner [1] due to the amplitude-
frequency coupling. This chaotic response is small and difficult to character-
ize. [2] It is also not resonant, because the driving force and the oscillator
are out of phase [3]. Recently, for oscillators with well-defined energies, a
method has been proposed to calculate a driving force which is in phase with
the oscillator velocity at all amplitudes. [4] Usually these driving forces are
aperiodic and are called resonant driving forces because the reflected energy
and the reaction power are zero [5|. Based on these ideas, we introduce a
more general defintion of resonance that is also valid for systems without a
well-defined energy function. We apply this concept in calculating resonant
driving forces for the chaotic dynamics of an logistic map.

GENERAL RESONANCE SPECTROSCOPY

Let us consider a nonlinear oscillator of type
. . dV (y,p)
y+n1y+——%—p‘—)-=F(t) (0.1)

where 7 is a friction constant, p) is a set of parameters of the nonliner
potential V and F is a driving force which is independent from y. Let us
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assume that the amplitude y at time ¢ = 0 is in the vicinity of a minimum
of the potential. To calculate resonant driving force one has to have a model
of the dynamics of the unperturbed experimental system

dV (z.5) _
dz

In order to calculate a resonant driving force the goal equations has to
be integrated [5]

F+ ot + 0 (0.2)

. . dV(z,p: .
Z+mz+ ——% = 13z (0.3)

which differs from the dynamics of the model just by an additional friction
term. Usually 73 is larger than 7,. The driving force results from F' (t) = 732

A driving force is called resonant if the reaction power is zero, i.e. the
transfered energy P = Fy is either always positive or always negative. If
the parameters of the model coincide with the parameters of the system
y(t) = 2(t) is a solution of Eq. (0.1). In many cases this solution is a
stable solution with a large basin of attraction [6]. If the initial conditions
lie within the basin of attraction, the driving force given by Eq. (0.1) is a
resonant driving force. The basic idea of this procedure is to find a model
which can predict the experimental system’s response for any perturbation
of physical interest and to use this model to force the system into a certain
dynamics. Usually this goal dynamics is calculated by a variation principle,
e.g. to get a large energy transfer. Of course, from an experimental point of
view it is interesting to search for a model with perturbations that produce
a large energy transfer in order to get a good signal to noise ratio, but any
other type of perturbation which produces a large response, such as a large
frequency shift, might be as useful. A common feature of all these methods is
the search for a model where the difference between all the goal dynamics of
physical interest and the response of the system becomes as small as possible,

i.e. the quantity R = (y (t) — = (t))—l should be as large as possible. The
average is taken over time and over all types of goal dynamics which are
of physical interest and which are in the basin of attraction of the solution
y(t) = z(t) if the model would be correct. A systematic search for the
maximum value of R is called general resonance spectroscopy since it can be
applied to systems where no well-defined energy function exists. In the next
section, we apply this concept to the dynamics of a logistic map and several
other maps and show that the corresponding resonance curves are sharp and
have a similar, simple shape.

RESONANCE CURVES OF SOME MAPS

We investigated discrete maps of the form

Yn+1 = S (yn, Ce) + F, (0.1)
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where ¢, is the parameter of the map, where F, is a time dependent
driving force and where n = 0,1,2,.... We use a map with a single unknown
parameter ¢,, in order to model the dynamics of the unperturbed map

Tnt1 = f(Tn,Cm) (0.5)

As the goal dynamics, we use a map which provides chaotic and periodic
dynamics

Znt1 = ¢ (zm c_q) (06)

and which satisfies the condition |'—i£%';‘&ll < 1 in order to ensure the sta-

bility of y, = z,. The deviation between yo and z¢ is anout 1%. The driving
force is given by F, = —f (2n,¢m) + g(2n,¢,). Fig. 1 shows the resonance
curves of several systems. The resonance curves have a sharp peak at the
exact value of the parameter.
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Fig. 2 R~? versus ¢, — c, for the same systems as in Fig. 1
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Fig.3 The slope of a linear approximation of R~! (see Fig.2) versus c, for the
logistic map f = 3y, (1 — ya). The solid line represents the magnitude of the
slope above c,, the broken line represents it below c..

Close to the peak of the resonance curve, R~! versus the parameter of the
model can be estimated by a straight line (Fig.2) This shows that the reso-
nance curves can be estimated by a hyperbola in this parameter region. The
slope of the straight line is a measure of the width of the resonance curve.
Fig. 3 shows that the slope depends on ¢,. When the goal dynamics is in an
periodic window, the resonance curve is sharper than for neighbouring value
for ¢, which generate a chaotic dynamics.
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